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Abstract.  A DC-set  is a set defined by means of convex constraints and one additional inverse convex 
constraint. Given an arbitrary closed subset M of the Euclidean n-space, we show that there exists a 
DC-set  in (n + 1)-space being homeomorphic to the given set M. Secondly, for any fixed n/> 2, we 
construct a compact n-dimensional manifold with boundary, which is a DC-set and which has 
arbitrarily large Betti-numbers r k for k ~< n - 2 .  
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1. Introduction and Main Results 

In optimization it happens that one has to optimize a real valued function over a 
set which is described by means of convex constraints and a reverse convex 
constraint (see, for example [6]). The aim of this paper is to show how complex 
the topological structure of such sets might be. 

D E F I N I T I O N  1. A subset A of En is called a DC-set ("difference of convex 
sets")  if there exist convex functions f ,  g:  Rn---> E, such that 

A = { x ~ ' l f ( x ) < ~ O , g ( x ) > - O }  [] (1) 

R E M A R K  1. In (1) we may replace the inequality f (x)  <~ 0 by means of a finite 
number  of them. This is due to the well-known fact that the maximum function 
taken over a finite number of convex functions, is convex too. Moreover ,  every 
DC-set  can be represented as a lower level set of a DC-function ("difference of 
convex functions").  In fact '  we have A=(x~R~lh(x)<.O}, where h is the 
difference of the convex function max(f ,  0) + max(g,  0) and the convex function 
g. 

T H E O R E M  A. Let  M C ~n be a closed set. Then, there exists a DC-set A C R "+1 
which is homeomorphic  with M. [] 

In the second theorem we use singular homology over the field of real numbers 
(for details we refer to [3], [5]). Let  X be a topological space. The dimension r k of 
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the k-th homology space of X is called the k-th Betti-number. The number r 0 is 
equal to the number of (path-) connected components of X. The number rk, 
k >i 1, counts, roughly speaking, the number of (k + 1)-dimensional "holes" in X. 
In case that X is a compact n-dimensional manifold (with boundary),  then all 
Betti-numbers are finite, and, in particular, r k = 0 for k > n. 

T H E O R E M  B. Let n >-2 be a fixed integer, and let po, pj ,  . . . , Pn-2, be arbitrary 
non-negative integers. Then, there exists a compact DC-set A C ~ ,  being an 
n-dimensional manifold (with boundary), such that for its Betti-numbers the 
inequalities r k >>'Pk, k = O, 1 , . . . ,  n - 2, hold. [] 

2. Proof of Theorems A, B 

L E M M A  1 (cf. [1]). Let M C R" be a closed set. Then, there exists a non-negative 
C~-function h: Rn---~ ~ with M = h-l(O). [] 

L E M M A  2 (cf. [4]). Let h: R"---~R, be a C2-function. Then, there exist convex 
C2-functions f,  g : R" ~ R such that h = f -  g. [] 

\ 

Proof of  Theorem A.  Let M C ~n be a closed set. In virtue of Lemma 1 we 
choose a non-negative C=-function h : Rn-~ ~ with M -- h-~(0). By Lemma 2, the 
function h can be written as the difference h = f - g  of convex cZ-functions f ,  g. 
With the aid of an additional coordinate xn+l, we define the following two convex 
functions F, G: 

F(x, xn+l) =f(x) -Xn+l, G(x,x,+x) =g(x) - x,+l ,  where x = ( x l , . . .  , x , ) .  

Consider the DC-set A = {(x, Xn+l) E ~n+llF(x, Xn+l) ~ 0, G(x, Xn+l) ~ 0}, Note, 
that f ( x ) ~ g ( x )  for all x, and that equality precisely holds on the set M. 
Consequently, the set A exactly consists of those points (x, X,+l) of Graph(F) 
with x E M ,  where Graph(F):=((X,  Xn+l)E~"+l[x ,+l=F(x)}  denotes the 
graph of F. Hence, M = I I ( A ) ,  where II:  ( x , x , + ~ ) ~ x  denotes the natural 
projection. The proof is now established, since the restricted mapping 
I l l  Graph(F) -" Graph(F)--~ R" is a homeomorphism. [] 

Before proving Theorem B we need to introduce some concepts of Karush-  
Kuhn-Tucker  theory, and also we need a theorem on homeomorphism and 
alternatives, based on Morse theory. For details we refer to [2] and [3]. 

Let  h n gj: ~n___~, i E l ,  ] E  J, be a finite number of Cl-functions, and define 
the set M[h, g]: 

M[h, g] = (x E ~"lhi(x) = O, i E I, gj(x) >i O, j E J} . (2) 
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Let  Jo(x) = {] ~ J[gj(x) = 0} denote the set of active inequality constraints. We say 
that the linear independence constraint qualification (LICQ) is satisfied at s 
M[h, g] if the set of vectors {Dhi(s i EI,  Dgj(s j EJo(s is linearly 
independent.  Here,  Dhi(2 ) stands for the row vector of the first order partial 
derivatives of the function h ,  evaluated at point 2. 

The Mangasarian-Fromovitz constraint qualification (MFCQ) is said to hold at 
s if the set of vectors (Dhi(x), i E I} is linearly independent, and if, in addition, 
there exists a vector ~ ~ ~n with Dhi(2)~ = 0, i E I, and Dgj(s > 0, j E J0(2). 
We say that (MFCQ) holds on M[h, g] if (MFCQ) is satisfied at each point 
s ~ M[h, g]. If it is clear, which constraint functions hi, gj are meant,  we just say: 
(MFCQ) holds on M; here M = M[h, g]. In case that (MFCQ) holds on M[h, g], 
then M[h, g] is an (n -[I[)-dimensional  manifold (with boundary). 

ASSUMPTION. From now on we assume that (MFCQ) holds on M[h, g], and 
that the functions f, hi, gj : g~, i E I, j E J, are C2-functions. 

A point 2 E M[h, g] is called a Karush-Kuhn-Tucker  point (KKT-point) for 
flM[h,g], if there exist real numbers hi, i EI,  and/zj,  j EJo(2), such that 

O f :  E AiDhi-I- E tzjDgjlz. (3) 
i~l j~Yo(2) 

Note, that the above numbers Ai, /,.Lj are unique in the case that (LICQ) holds. A 
KKT-point 2 is called non-degenerated if (LICQ) holds at 2, and if, in addition, 
/z j>0,  j EJo(s and the matrix VrDEL(x) V is non-singular. In the latter, 
DEL(x) stands for the Hessian of the Lagrange function L at Y, 

Z ( x ) = f ( x ) -  E Aihi(x)- E ~jgi(x), (4) 
iE1 jEJo(x ) 

and V is a matrix whose columns form a basis for the tangent space T(2), 

T(2) = [~ Ker Dhi(x ) A ('~ Ker Dgj(2). (5) 
i@1 j~Jo(2) 

Note, that D2L = DEf in the case of affine linear constraint function hi, gr This 
will tacitly be used in the proof of Theorem B. 

If 2 is a non-degenerated KKT-point for flM[h,g], then the number of negative 
eigenvalues of the above matrix vTDEL(.ff) V is called the (quadratic) index at 2. 

With M = M[h, g] and b i> a, we put 

M b = (x E Mlf(x) < b) ,  M~ = (x E Mla <-f(x) <- b) .  (6) 

Regarding the next lemma, ref. [3] and ref. [2] are based on (LICQ) and 
(MFCQ),  respectively. 
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L E M M A  3 (cf. [2], [3]). Under the above notations and assumption, suppose that 
M is compact. In case that Mba, with b >! a, contains no KKT-points, then the lower 
level sets M a and M b are homeomorphic. On the other hand, suppose that M~ 
contains precisely one KKT-point s and we have a < f ( s  < b. If, in addition, the 
KKT-point s is non-degenerated with quadratic index k, then the following 
alternative holds (in case k = O, always the second one holds): 

f r  k I(M b) : rk_l(M ~) -- 1} [rk_l(M b) : rk_l(Ma)} 
eitherl - b or 

t rk(M ) = rk(M" ) [ rk(M b) = rk(M a) + 1 )"  

Moreover, ri(M b) = ri(M ~) for i ~  {k - 1, k}.  [] 

Proof o f  Theorem B. The required DC-set A is obtained as follows. Firstly, we 
construct a special polytope P*. Then, the set A is defined as the intersection of 
P* and a suitable upper leVel set of the strictly concave function ~b := - I lx l l  =, 
where I1" II denotes the Euclidean norm. 
Put p =P0 + P l  + " "  +Pn-2 and let S n-1 = ix ~ •n[ Ilxll -- 1} be the unit sphere in 
R n. Choose p distinct points x0, i, i = 1 , . . . ,  p, on the sphere S n-l ,  and then 
choose r<l/4min{1, minia;i~jllxo,i-Xo,j[[}. For i = l , . . . , p ,  we choose n 
points Vl , i , . . .  , On, i in a n-x, such that Ilx0,i- vk,ill = r, k = x , . . . ,  n, and such that 
the simplex Z(v~,i , . . .  , vn,i) spanned by the set {Vx, i . . . . .  vn,i} is a regular one. 
Now, we shift the tangent space Tok ' i of the sphere S n-1 at the point Vk,i parallelly 
until it meets the point Xo, i, k = 1 , . . . ,  n. This uniquely defines a polyhedral cone 
Ci, pointed at Xo, i and containing the origin. The intersection of C i with the 
hyperplane through the points vk,i, k = 1 , . . . ,  n, is again a regular simplex with 
vertices denoted by Xk,i, i=  1 . . . .  , n. Note, that IIx ,,tl < 1 for k ~ 0 .  Put P = 
~ (x~,ilk -- 0, 1 , . . .  , n; i = 1 , . . .  , p},  the convex hull of the points Xk, i. For the 
description of P we choose a minimal system of linear inequalities aTx - bj >>- O, 
j E J. With respect to the latter system (MFCQ) holds. From the choice of the 
above number r, it follows that each segment [x0, . X k j ,  i # j ,  is contained in the 
cone Ci. In view of the very construction, this implies that even (LICQ) is fulfilled 
atx0, i , i = l , . . . , p .  

Let Vert(P) denote the set of vertices of P. 
Put a = max {llxll Ix ~ Ver t (e ) \ fx0 ,1 , . . . ,  x0,p}},/3 = max{ Ilxll Ix is KKT-poin t  

for ~b[v and [[xl[ ~ 1}, and choose 7 such that max{a,/3} < 3' < 1. For each C i we 
choose a hyperplane H i orthogonal to the vector x0,i, intersecting the open line 
segment (0, x0,~) and satisfying the inequality inf{ [Ix 1] Ix E Hi} > 3". 

This hyperplane intersects the extremal rays of Ci, say at the points 
Y~,, . . . .  , Y~,i. Note, that the simplex E ( y l , i , . . .  , Yn,i) is regular. For appropriate 
choice of the hyperplanes Hi, the simplices E(x0,i, Yl,i, �9 �9 �9 Y~,i), i -- 1 , . . . ,  p, 
are pairwise disjoint. 

Now, we consider the polytope /5 defined by 
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p = c~ {(Vert(P)\{Xo,i[ i = 1 . . . . .  p}) U {y~,ilk = i . . . . .  n ; i =  1 , ' . . . ,  p}} .  

Elementary calculations show that the barycenters of the k-faces of the simplex 
E ( Y l , i , - ' '  , Y n , i ) ,  k = 0 , 1  . . . .  , n - l ,  are precisely the KKT-points for ~b[p 
belonging to the simplex E ( y l , i , . . . ,  Y n , i ) ;  m o r e o v e r ,  all of them are non- 
degenerated with quadratic index equal to the dimension of the corresponding 
face. 

By means of local perturbation of the polytope P within the simplex 

E(Xo.i, Y l , i ,  �9 �9 �9 , Y n , i )  around the point x0,i, i =P0 + 1 , . . . ,  p,  we obtain the 
announced special polytope P*. For suitable e > 0  the lower level set {x 
P*14~(x) ~< e -  1} then is the DC-set A we are looking for. 

Let  1 ~< k ~< n -  2, and suppose that the local perturbations are already per- 
formed around (Pl + "" " - I - p k - x )  of the vertices xo,i, i =P0 + 1 , . . .  gj~-~ 1 pj. 
Choose a set of Pk unperturbed vertices of the type Xo,i, and let x 0 be one of 
these. We proceed by working within the simplex Z(x0, Yl,  �9 �9 �9 Yn). Put )Tj = Yi 
for j = k + 3, k + 4 , . . . ,  n. On the open line segment (x0, y~) we choose a point 
17., i = 1 , . . . ,  k + 2, in such a way that the affine hull of (Nili -- 1 , . . . ,  k + 2} is 
parallel to the affine hull of {yil i = 1 , . . . ,  k + 2}. In this way, the points )7i, 
i = 1 . . . .  , k + 2 ,  can be chosen arbitrarily close to the point x 0. The points 
371 , . . . ,  )7 n uniquely define a minimal closed halfspace containing these points but 
not x 0. The local perturbation around x0, now, consists of taking the intersection 
of the latter halfspace with the polytope, perturbed so far. So, after this 
intersection is performed, we have arrived at a polytope, say /5. Let /~k+l be its 
(k + 1)-dimensional face spanned by the vertices 371,... ,)Tk+ 2. The function ~b 
takes its maximum over Fk+I in a point 2 in its relative interior, and we may 
suppose that the value ~b(2) is close to ~b(x0). The point 2 is, in fact, a 
non-degenerated KKT-point for ~blp with quadratic index equal to k + 1. 

A moment of reflection shows that we can choose ~7 > 0 such that no other 
KKT-point for ~blf within the simplex E(x0, Y l , . . - ,  Yn) has a ~b-value in the 
interval [~b(2)-~7, ~b(s +r/]. Consider the polytope K =  C ~ ( y l , .  �9 " , Yn, 
371 . . . . .  )7k+2}. By K a we denote the lower level set { x E K [ c h ( x ) < - a } .  Put 
C = K  ~'(~-~. Then, C is a compact manifold with boundary. We contend 
that its Betti-numbers r~(C) are given by ro(C ) = rk(C ) = 1, and ri(C ) = 0 for 
ij~f {0, k}. 

To see this, firstly note that the set {x E KI4,(x )/> 4~(J?) + ~} does not contain 
any KKT-point for ~blr. Let ~max denote max{4~(x)lx ~ g}. 

In virtue of Lemma 3 we then conclude that K 6max and K e(~§ are homeomor- 
phic. But, K 6 . . . .  K, and K,  being a compact convex set, is contractible. Hence, 
both K and K 6(e~§ have the homology of a point, i.e. ro(K ) = ro(K 4"~§ = 1 
and ri(K ) = r i (g  44~)+~) = 0 for i > 0. Since the KKT-point ~ has quadratic index 
equal to k + 1, we must have (cf. Lemma 3) either rk(K ~ §  = r ~ ( C ) -  1, or 
rk+l(K 4 ~ §  = rk§ ) + 1. From the values of the Betti-numbers of K ~(~§ we 
conclude that the first alternative holds, thus r~(C) = 1. The other Betti-numbers 
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of C are equal to the corresponding ones of K 6(~)+n. This proves our contention 
on the Betti-numbers of C. 

Analogously, we can perform local perturbations around other (pk + P~+I" ' "  + 
P n - z  - 1) vertices of type x0, i, still being unperturbed. During this procedure we 
adjust all values ~b(Y), with ~? as above, to one common value. The construction 
of the polytope P* has now been completed. 

Comparing P* with P, we note that they have at least P0 vertices on S n-1 in 
common. These vertices are global minima for the function ~b on P*. In fact, they 
produce in the lower level set { x E P * l q b ( x ) < - e - 1 }  enough (contractible) 
components  in order to raise the Betti-number r 0. This completes the roof  of the 

theorem. [] 
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