On the Topological Complexity of DC-Sets

H. GÜNZEL¹, R. HIRABAYASHI², H. TH. JONGEN³, and S. SHINDOH⁴ ¹TU Delft, Faculty of Technical Mathematics and Computer Sciences, Mekelweg 4, 2628 CD Delft, The Netherlands; ²Science University of Tokyo, Department of Management Sciences, Kagurazaka 1-3, Shinjukuku, Tokyo 162, Japan; ³RWTH Aachen, Department of Mathematics, Templergraben 55, D-52062 Aachen, Germany; ⁴The National Defense Academy Department of Mathematics and Physics 1-10-20 Hashirimizu

⁴The National Defense Academy, Department of Mathematics and Physics, 1–10–20 Hashirimizu, Yokosuka, Kanagawa 239, Japan.

(Received: 16 July 1992; accepted: 29 April 1993)

Abstract. A DC-set is a set defined by means of convex constraints and one additional inverse convex constraint. Given an arbitrary closed subset M of the Euclidean *n*-space, we show that there exists a DC-set in (n + 1)-space being homeomorphic to the given set M. Secondly, for any fixed $n \ge 2$, we construct a compact *n*-dimensional manifold with boundary, which is a DC-set and which has arbitrarily large Betti-numbers r_k for $k \le n-2$.

Key words. Reverse convex constraint, DC-set, topological complexity.

1. Introduction and Main Results

In optimization it happens that one has to optimize a real valued function over a set which is described by means of convex constraints and a reverse convex constraint (see, for example [6]). The aim of this paper is to show how complex the topological structure of such sets might be.

DEFINITION 1. A subset A of \mathbb{R}^n is called a DC-set ("difference of convex sets") if there exist convex functions $f, g: \mathbb{R}^n \to \mathbb{R}$, such that

$$A = \{x \in \mathbb{R}^n | f(x) \le 0, g(x) \ge 0\}$$

$$(1)$$

REMARK 1. In (1) we may replace the inequality $f(x) \le 0$ by means of a finite number of them. This is due to the well-known fact that the maximum function taken over a finite number of convex functions, is convex too. Moreover, every DC-set can be represented as a lower level set of a DC-function ("difference of convex functions"). In fact, we have $A = \{x \in \mathbb{R}^n | h(x) \le 0\}$, where h is the difference of the convex function $\max(f, 0) + \max(g, 0)$ and the convex function g.

THEOREM A. Let $M \subset \mathbb{R}^n$ be a closed set. Then, there exists a DC-set $A \subset \mathbb{R}^{n+1}$ which is homeomorphic with M.

In the second theorem we use singular homology over the field of real numbers (for details we refer to [3], [5]). Let X be a topological space. The dimension r_k of

Journal of Global Optimization 4: 279–284, 1994. © 1994 Kluwer Academic Publishers. Printed in the Netherlands.

the k-th homology space of X is called the k-th Betti-number. The number r_0 is equal to the number of (path-) connected components of X. The number r_k , $k \ge 1$, counts, roughly speaking, the number of (k + 1)-dimensional "holes" in X. In case that X is a compact *n*-dimensional manifold (with boundary), then all Betti-numbers are finite, and, in particular, $r_k = 0$ for k > n.

THEOREM B. Let $n \ge 2$ be a fixed integer, and let $p_0, p_1, \ldots, p_{n-2}$, be arbitrary non-negative integers. Then, there exists a compact DC-set $A \subset \mathbb{R}^n$, being an n-dimensional manifold (with boundary), such that for its Betti-numbers the inequalities $r_k \ge p_k, k = 0, 1, \ldots, n-2$, hold.

2. Proof of Theorems A, B

LEMMA 1 (cf. [1]). Let $M \subset \mathbb{R}^n$ be a closed set. Then, there exists a non-negative C^{∞} -function $h : \mathbb{R}^n \to \mathbb{R}$ with $M = h^{-1}(0)$.

LEMMA 2 (cf. [4]). Let $h: \mathbb{R}^n \to \mathbb{R}$, be a C^2 -function. Then, there exist convex C^2 -functions $f, g: \mathbb{R}^n \to \mathbb{R}$ such that h = f - g.

Proof of Theorem A. Let $M \subset \mathbb{R}^n$ be a closed set. In virtue of Lemma 1 we choose a non-negative C^{∞} -function $h : \mathbb{R}^n \to \mathbb{R}$ with $M = h^{-1}(0)$. By Lemma 2, the function h can be written as the difference h = f - g of convex C^2 -functions f, g. With the aid of an additional coordinate x_{n+1} , we define the following two convex functions F, G:

$$F(x, x_{n+1}) = f(x) - x_{n+1}, G(x, x_{n+1}) = g(x) - x_{n+1}, \text{ where } x = (x_1, \dots, x_n).$$

Consider the DC-set $A = \{(x, x_{n+1}) \in \mathbb{R}^{n+1} | F(x, x_{n+1}) \le 0, G(x, x_{n+1}) \ge 0\}$. Note, that $f(x) \ge g(x)$ for all x, and that equality precisely holds on the set M. Consequently, the set A exactly consists of those points (x, x_{n+1}) of Graph(F)with $x \in M$, where Graph $(F) := \{(x, x_{n+1}) \in \mathbb{R}^{n+1} | x_{n+1} = F(x)\}$ denotes the graph of F. Hence, $M = \Pi(A)$, where $\Pi : (x, x_{n+1}) \mapsto x$ denotes the natural projection. The proof is now established, since the restricted mapping $\Pi|_{\text{Graph}(F)} : \text{Graph}(F) \to \mathbb{R}^n$ is a homeomorphism.

Before proving Theorem B we need to introduce some concepts of Karush-Kuhn-Tucker theory, and also we need a theorem on homeomorphism and alternatives, based on Morse theory. For details we refer to [2] and [3].

Let $h_i, g_j: \mathbb{R}^n \to \mathbb{R}, i \in I, j \in J$, be a finite number of C^1 -functions, and define the set M[h, g]:

$$M[h, g] = \{ x \in \mathbb{R}^n | h_i(x) = 0, i \in I, g_i(x) \ge 0, j \in J \}.$$
 (2)

Let $J_0(x) = \{j \in J | g_j(x) = 0\}$ denote the set of active inequality constraints. We say that the linear independence constraint qualification (LICQ) is satisfied at $\bar{x} \in$ M[h, g] if the set of vectors $\{Dh_i(\bar{x}), i \in I, Dg_j(\bar{x}), j \in J_0(\bar{x})\}$ is linearly independent. Here, $Dh_i(\bar{x})$ stands for the row vector of the first order partial derivatives of the function h_i , evaluated at point \bar{x} .

The Mangasarian-Fromovitz constraint qualification (MFCQ) is said to hold at \bar{x} if the set of vectors $\{Dh_i(\bar{x}), i \in I\}$ is linearly independent, and if, in addition, there exists a vector $\xi \in \mathbb{R}^n$ with $Dh_i(\bar{x})\xi = 0$, $i \in I$, and $Dg_j(\bar{x})\xi > 0$, $j \in J_0(\bar{x})$. We say that (MFCQ) holds on M[h, g] if (MFCQ) is satisfied at each point $\bar{x} \in M[h, g]$. If it is clear, which constraint functions h_i , g_j are meant, we just say: (MFCQ) holds on M; here M = M[h, g]. In case that (MFCQ) holds on M[h, g], then M[h, g] is an (n - |I|)-dimensional manifold (with boundary).

ASSUMPTION. From now on we assume that (MFCQ) holds on M[h, g], and that the functions $f, h_i, g_j : \mathbb{R}, i \in I, j \in J$, are C^2 -functions.

A point $\bar{x} \in M[h, g]$ is called a Karush-Kuhn-Tucker point (KKT-point) for $f|_{M[h,g]}$, if there exist real numbers $\lambda_i, i \in I$, and $\mu_i, j \in J_0(\bar{x})$, such that

$$Df = \sum_{i \in I} \lambda_i Dh_i + \sum_{j \in J_0(\bar{x})} \mu_j Dg_j|_{\bar{x}}.$$
(3)

Note, that the above numbers λ_i , μ_j are unique in the case that (LICQ) holds. A KKT-point \bar{x} is called non-degenerated if (LICQ) holds at \bar{x} , and if, in addition, $\mu_j > 0$, $j \in J_0(\bar{x})$, and the matrix $V^T D^2 L(\bar{x}) V$ is non-singular. In the latter, $D^2 L(\bar{x})$ stands for the Hessian of the Lagrange function L at \bar{x} ,

$$L(x) = f(x) - \sum_{i \in I} \lambda_i h_i(x) - \sum_{j \in J_0(x)} \mu_j g_j(x) , \qquad (4)$$

and V is a matrix whose columns form a basis for the tangent space $T(\bar{x})$,

$$T(\bar{x}) = \bigcap_{i \in I} Ker \ Dh_i(\bar{x}) \cap \bigcap_{j \in J_0(\bar{x})} Ker \ Dg_j(\bar{x}) \ .$$
(5)

Note, that $D^2L = D^2f$ in the case of affine linear constraint function h_i , g_j . This will tacitly be used in the proof of Theorem B.

If \bar{x} is a non-degenerated KKT-point for $f|_{M[h,g]}$, then the number of negative eigenvalues of the above matrix $V^{\mathsf{T}}D^{2}L(\bar{x}) V$ is called the (quadratic) index at \bar{x} . With M = M[h, g] and $b \ge a$, we put

with M = M[n, g] and $b \ge a$, we put

$$M^{o} = \{x \in M | f(x) \le b\}, \quad M^{o}_{a} = \{x \in M | a \le f(x) \le b\}.$$
(6)

Regarding the next lemma, ref. [3] and ref. [2] are based on (LICQ) and (MFCQ), respectively.

LEMMA 3 (cf. [2], [3]). Under the above notations and assumption, suppose that M is compact. In case that M_a^b , with $b \ge a$, contains no KKT-points, then the lower level sets M^a and M^b are homeomorphic. On the other hand, suppose that M_a^b contains precisely one KKT-point \bar{x} and we have $a < f(\bar{x}) < b$. If, in addition, the KKT-point \bar{x} is non-degenerated with quadratic index k, then the following alternative holds (in case k = 0, always the second one holds):

either
$${r_{k-1}(M^b) = r_{k-1}(M^a) - 1 \atop r_k(M^b) = r_k(M^a)}$$
 or ${r_{k-1}(M^b) = r_{k-1}(M^a) \atop r_k(M^b) = r_k(M^a) + 1}$.

Moreover, $r_i(M^b) = r_i(M^a)$ for $i \not\in \{k-1, k\}$.

Proof of Theorem B. The required DC-set A is obtained as follows. Firstly, we construct a special polytope P^* . Then, the set A is defined as the intersection of P^* and a suitable upper level set of the strictly concave function $\phi := -||x||^2$, where $|| \cdot ||$ denotes the Euclidean norm.

Put $p = p_0 + p_1 + \dots + p_{n-2}$ and let $S^{n-1} = \{x \in \mathbb{R}^n | ||x|| = 1\}$ be the unit sphere in \mathbb{R}^n . Choose p distinct points $x_{0,i}$, i = 1, ..., p, on the sphere S^{n-1} , and then choose $r < 1/4 \min\{1, \min_{i,j; i \neq j} || x_{0,i} - x_{0,j} ||\}$. For i = 1, ..., p, we choose n points $v_{1,i}, \ldots, v_{n,i}$ in S^{n-1} , such that $||x_{0,i} - v_{k,i}|| = r, k = 1, \ldots, n$, and such that the simplex $\Sigma(v_{1,i}, \ldots, v_{n,i})$ spanned by the set $\{v_{1,i}, \ldots, v_{n,i}\}$ is a regular one. Now, we shift the tangent space $T_{v_{k,i}}$ of the sphere S^{n-1} at the point $v_{k,i}$ parallelly until it meets the point $x_{0,i}$, $k = 1, \ldots, n$. This uniquely defines a polyhedral cone C_i , pointed at $x_{0,i}$ and containing the origin. The intersection of C_i with the hyperplane through the points $v_{k,i}$, k = 1, ..., n, is again a regular simplex with vertices denoted by $x_{k,i}$, i = 1, ..., n. Note, that $||x_{k,i}|| < 1$ for $k \neq 0$. Put P = $\mathscr{C}\{x_{k,i}|k=0,1,\ldots,n;i=1,\ldots,p\}$, the convex hull of the points $x_{k,i}$. For the description of P we choose a minimal system of linear inequalities $a_i^{\mathsf{T}} x - b_i \ge 0$, $j \in J$. With respect to the latter system (MFCQ) holds. From the choice of the above number r, it follows that each segment $[x_{0,i}, x_{k,i}]$, $i \neq j$, is contained in the cone C_i . In view of the very construction, this implies that even (LICQ) is fulfilled at $x_{0,i}, i = 1, ..., p$.

Let Vert(P) denote the set of vertices of P.

Put $\alpha = \max \{ ||x|||x \in \operatorname{Vert}(P) \setminus \{x_{0,1}, \ldots, x_{0,p}\} \}$, $\beta = \max \{ ||x|||x \text{ is KKT-point for } \phi|_p \text{ and } ||x|| \neq 1 \}$, and choose γ such that $\max\{\alpha, \beta\} < \gamma < 1$. For each C_i we choose a hyperplane H_i orthogonal to the vector $x_{0,i}$, intersecting the open line segment $(0, x_{0,i})$ and satisfying the inequality $\inf\{||x|||x \in H_i\} > \gamma$.

This hyperplane intersects the extremal rays of C_i , say at the points $y_{1,i}, \ldots, y_{n,i}$. Note, that the simplex $\Sigma(y_{1,i}, \ldots, y_{n,i})$ is regular. For appropriate choice of the hyperplanes H_i , the simplices $\Sigma(x_{0,i}, y_{1,i}, \ldots, y_{n,i})$, $i = 1, \ldots, p$, are pairwise disjoint.

Now, we consider the polytope \tilde{P} defined by

$$\tilde{P} = \mathscr{C}\left\{\left(\operatorname{Vert}(P) \setminus \{x_{0,i} | i = 1, \ldots, p\}\right) \cup \{y_{k,i} | k = 1, \ldots, n; i = 1, \ldots, p\}\right\}.$$

Elementary calculations show that the barycenters of the k-faces of the simplex $\Sigma(y_{1,i}, \ldots, y_{n,i})$, $k = 0, 1, \ldots, n-1$, are precisely the KKT-points for $\phi|_{\tilde{P}}$ belonging to the simplex $\Sigma(y_{1,i}, \ldots, y_{n,i})$; moreover, all of them are non-degenerated with quadratic index equal to the dimension of the corresponding face.

By means of local perturbation of the polytope P within the simplex $\Sigma(x_{0,i}, y_{1,i}, \ldots, y_{n,i})$ around the point $x_{0,i}, i = p_0 + 1, \ldots, p$, we obtain the announced special polytope P^* . For suitable $\varepsilon > 0$ the lower level set $\{x \in P^* | \phi(x) \le \varepsilon - 1\}$ then is the DC-set A we are looking for.

Let $1 \le k \le n-2$, and suppose that the local perturbations are already performed around $(p_1 + \cdots + p_{k-1})$ of the vertices $x_{0,i}, i = p_0 + 1, \dots, \sum_{i=1}^{k-1} p_i$. Choose a set of p_k unperturbed vertices of the type $x_{0,i}$, and let x_0 be one of these. We proceed by working within the simplex $\Sigma(x_0, y_1, \dots, y_n)$. Put $\bar{y}_i = y_i$ for j = k + 3, k + 4, ..., n. On the open line segment (x_0, y_i) we choose a point \bar{y}_i , $i = 1, \dots, k+2$, in such a way that the affine hull of $\{\bar{y}_i | i = 1, \dots, k+2\}$ is parallel to the affine hull of $\{y_i | i = 1, ..., k+2\}$. In this way, the points $\overline{y_i}$, $i = 1, \ldots, k + 2$, can be chosen arbitrarily close to the point x_0 . The points $\bar{y_1}, \ldots, \bar{y_n}$ uniquely define a minimal closed halfspace containing these points but not x_0 . The local perturbation around x_0 , now, consists of taking the intersection of the latter halfspace with the polytope, perturbed so far. So, after this intersection is performed, we have arrived at a polytope, say \bar{P} . Let \bar{F}_{k+1} be its (k+1)-dimensional face spanned by the vertices $\bar{y}_1, \ldots, \bar{y}_{k+2}$. The function ϕ takes its maximum over \bar{F}_{k+1} in a point \bar{x} in its relative interior, and we may suppose that the value $\phi(\bar{x})$ is close to $\phi(x_0)$. The point \bar{x} is, in fact, a non-degenerated KKT-point for $\phi|_{\bar{p}}$ with quadratic index equal to k+1.

A moment of reflection shows that we can choose $\eta > 0$ such that no other KKT-point for $\phi|_{\bar{P}}$ within the simplex $\Sigma(x_0, y_1, \ldots, y_n)$ has a ϕ -value in the interval $[\phi(\bar{x}) - \eta, \phi(\bar{x}) + \eta]$. Consider the polytope $K = \mathscr{C}\{y_1, \ldots, y_n, \bar{y}_1, \ldots, \bar{y}_{k+2}\}$. By K^a we denote the lower level set $\{x \in K | \phi(x) \leq a\}$. Put $C = K^{\phi(\bar{x}) - \eta}$. Then, C is a compact manifold with boundary. We contend that its Betti-numbers $r_i(C)$ are given by $r_0(C) = r_k(C) = 1$, and $r_i(C) = 0$ for $i \notin \{0, k\}$.

To see this, firstly note that the set $\{x \in K | \phi(x) \ge \phi(\bar{x}) + \eta\}$ does not contain any KKT-point for $\phi|_{K}$. Let ϕ_{\max} denote $\max\{\phi(x) | x \in K\}$.

In virtue of Lemma 3 we then conclude that $K^{\phi_{\max}}$ and $K^{\phi(\bar{x})+\eta}$ are homeomorphic. But, $K^{\phi_{\max}} = K$, and K, being a compact convex set, is contractible. Hence, both K and $K^{\phi(\bar{x})+\eta}$ have the homology of a point, i.e. $r_0(K) = r_0(K^{\phi(\bar{x})+\eta}) = 1$ and $r_i(K) = r_i(K^{\phi(\bar{x})+\eta}) = 0$ for i > 0. Since the KKT-point \bar{x} has quadratic index equal to k + 1, we must have (cf. Lemma 3) either $r_k(K^{\phi(\bar{x})+\eta}) = r_k(C) - 1$, or $r_{k+1}(K^{\phi(\bar{x})+\eta}) = r_{k+1}(C) + 1$. From the values of the Betti-numbers of $K^{\phi(\bar{x})+\eta}$ we conclude that the first alternative holds, thus $r_k(C) = 1$. The other Betti-numbers

of C are equal to the corresponding ones of $K^{\phi(\bar{x})+\eta}$. This proves our contention on the Betti-numbers of C.

Analogously, we can perform local perturbations around other $(p_k + p_{k+1} \cdots + p_{n-2} - 1)$ vertices of type $x_{0,i}$, still being unperturbed. During this procedure we adjust all values $\phi(\bar{x})$, with \bar{x} as above, to one common value. The construction of the polytope P^* has now been completed.

Comparing P^* with P, we note that they have at least p_0 vertices on S^{n-1} in common. These vertices are global minima for the function ϕ on P^* . In fact, they produce in the lower level set $\{x \in P^* | \phi(x) \le \varepsilon - 1\}$ enough (contractible) components in order to raise the Betti-number r_0 . This completes the roof of the theorem.

Acknowledgement

We would like to thank one of the referees who pointed out that a DC-set can be represented as a lower level set of a DC-function.

References

- 1. Bröcker, Th. and Lander, L. (1975), *Differentiable germs and catastrophes*, London Math. Society Lect. Note Series, Vol. 17, Cambridge University Press.
- 2. Guddat, J., Jongen, H. Th., and Rueckmann, J. (1986), On stability and stationary points in nonlinear optimization, *Journal of the Australian Mathematical Society*, Series B 28, 36-56.
- Jongen, H. Th., Jonker P., and Twilt, F. (1983), Nonlinear Optimization in Rⁿ, I. Morse Theory, Chebyshev Approximation, Methoden und Verfahren der mathematischen Physik, Vol. 29, Peter Lang Verlag, Frankfurt a.M., Bern, New York.
- 4. Pommelet, A. (1982), Analyse convexe et théorie de Morse, These troisième cycle, Univ. Paris IX.
- 5. Spanier, E.H. (1966), Algebraic Topology, McGraw-Hill Book Comp.
- Tuy, H. and Horst, R. (1982), Convergence and restart in branch-and-bound algorithms for global optimization. Application to concave minimization and d.c. optimization problems, *Mathematical Programming* 41, 161–183.